
Kalpana: A Multimodal Adventure Spellcasting Game
Sohini Kar, Lilian Luong

We built a D&D-inspired multimodal spellcasting game focused on teaching users how to
perform various spells using both speech and gesture recognition, and in turn, use these spells to
attack and defeat a variety of enemies. Through a game UI full of features, infinite enemies, and
exciting spells, Kalpana creates an immersive experience that encourages users to perfect their
spellcasting. Our software includes Python 3.8, the Leap Motion Tracking Software, LeapSDK,
SpeechRecognition, Numpy, and Flask. For the game UI, we used Unity. Our hardware included
the Leap and a microphone.

Kalpana: A Multimodal Spellcasting Adventure Game

Sohini Kar (ID: 919186318), Lilian Luong (ID: 910850097)

1. Introduction

1.1. Motivation

The real world can sometimes feel boring; people often
look to combine imagination and excitement through role-
playing games filled with foreign lands, grand adventures,
and wondrous magic. Tabletop roleplaying games were de-
veloped with the intention of supporting these desires, with
Dungeons Dragons (DD) standing as the most well-known
of these games. The game involves acting as a specific char-
acter defined by a character sheet and performing various
spells, whose accuracy and power are randomized based on
dice rolls.

However, while immersive materials and excellent act-
ing can help players imagine themselves as part of a story,
the game always inevitably returns to its dice and pen-
and-paper mechanics. When attacking a horde of goblins
merely requires marking off a spell slot on a character sheet,
and persuading a nobleman to offer his home as sanctu-
ary against vampires takes only a lucky dice roll, the fan-
tasy fades. During our own DD experiences, we have no-
ticed how fellow players have lost the motivation to act like
their characters within the story, instead just weaponizing
the numbers on their character sheets to “win the game”. It
has become clear that the tabletop medium, using only num-
bers and lucky dice rolls, is not enough to fully support the
fantasy world, adventure, and - most of all - actions that DD
aims to create. Our goal in this project is to use the power
of multimodal interfaces to craft magical experiences in a
more immersive way.

2. Related Work

Our project focuses on generic gesture and speed recog-
nition, sentiment analysis on speech, and creating a mul-
timodal flow integrating gesture and speech commands to-
gether. The functionality for gesture and speech recognition
is key in developing the ability to recognize and execute
spells, and sentiment recognition can bring in a deeper ex-
perience through encouraging true roleplay.

Gesture recognition has been explored and developed to
create a rapidly processing stream of information. Lovell
[5] describes a design for an inertial sensor system that may
be used for gesture recognition. These data streams can

be quickly processed to detect specific gestures. Another
study by Yin [6] uses a hierarchical Hidden Markov model
to create a real-time continuous gesture recognition appli-
cation with the capability to add new gestures through only
3-6 repetitions and a small training time. This is highly
applicable to our project, as we are interested in develop-
ing a gesture recognition system that may run quickly and
accurately. Additionally, the Gesture Recognition Toolkit
[4] was developed to make gesture recognition using ma-
chine learning more accessible. This can be adapted for our
project to learn about potential functions and methods for
signal processing and classification algorithms.

A key study by Chang [3] focuses on implementing a
Hidden Markov model for the purpose of gesture recogni-
tion, with the goal of using fluid and natural movements
to control a Powerpoint presentation. This model also uses
speech commands to give the user an additional level of pre-
cision and control over the system, similar to our system.

Badjatiya et al. [1] worked on understanding hate speech
and running sentiment analysis for the purpose of detecting
hate speech in Twitter tweets. Natural language processing
is a difficult task, and one of our key goals is parsing sen-
timent from speech to aid in calculating the power or type
of spells casted within the game, especially since the role-
play aspect is key for our project. Cachola et al. [2] also
performed a study on detecting vulgarity from speech, and
they explain how vulgar words are commonly part of popu-
lar sentiment and emotion analysis lexicons.

Finally, there has been work developing realistic spell-
casting technology in relation to Harry Potter, which uses
wands to perform spells. An example of one such technol-
ogy is displayed in Figure 1. However, we are focused on
a D&D-related use case, with a separate focus on roleplay
and lacking wands.

This project aims to combine gesture recognition, speech
parsing, and sentiment analysis to effectively integrate dif-
ferent modes of communication into one game focused on
encouraging roleplay and accurate spellcasting. While there
have not been efforts prior combining all three of these,
there are numerous studies individually analyzing all of
them as well as combining gestures and speech.

1

Figure 1. Diagram of wand motions and incantations associated
with spells in the Harry Potter series

2.1. Collaboration Statement

For the preliminary version, Lilian implemented the ges-
ture recognition and Sohini implemented the speech recog-
nition, and both worked on combining the systems to run
asynchronously. Lilian then set up Flask and connected to
Unity, while Sohini implemented the game mechanics and
logic as well as a command-line version of the game. To
create the main game, Lilian worked on translating all of
the code for the game logic to C# for use in Unity as well as
designing and building the different game states and inter-
face components, and Sohini worked on the art and assets
for the game. Finally, both were responsible for testing and
polishing the game.

2.2. Code

The code for our project is available at:
https://github.com/lilianluong/multimodal-fantasy-game

3. System Overview

A diagram of system components, inputs, and outputs
can be seen in Figure 2.

3.1. Functionality

We created a digital game which preserves the core prin-
ciples and mechanics of traditional fantasy role-playing
games: encounters and battles ranging from social to com-
bative, and a large variety of (often magical) abilities that
can be used to solve them. To take any action, how-
ever, players must perform it themselves using speech and
gestures instead of simply rolling dice, where the quality
of their spellcasting directly impacts their in-game perfor-
mance. They thus insert themselves into a more immer-
sive adventure and experience the hero’s growth and im-
provement - formerly achieved through generic number-
crunching - as their own journey.

The system combines gesture recognition - using input
from a Leap Motion Controller - with speech recognition
to offer the player a multimodal interface for casting spells.
After learning the incantation and gesture needed for a spell,
the player can use it in battles against monsters or to over-
come obstacles in their path. The cast’s timing and preci-
sion affects how powerful the spell becomes, encouraging
further immersion.

3.2. Example Input and Response

The player has just entered the game and decides to test
the Spell Tutor, a gloomy and medieval tune looping gently
in the background. A dialogue on the screen explains that to
cast the spell, the player must say the spell’s name, “Flame”,
while using their hand to perform the gesture shown in the
animation in the center of the screen. The player tries cast-
ing the spell: they move their hand over the sensor on the
table face down, saying “Flame” at the same time. A red
glow appears on the screen, indicating that the spellcast suc-
ceeded.

Having learned the “Flame” spell, the player proceeds to
an Adventure, a fight against a snarling werewolf. A health
bar displayed over the werewolf’s head is full; a similar bar
shows the adventurer’s health at the bottom of the screen.
The player immediately performs their newly learned spell,
repeating the gesture and shouting “Flame”; a red glow ap-
pears and strikes the werewolf. Its health bar reduces by a
mere quarter, and a small visual indicator shows the damage
dealt. In the lower right box appears the spell detected and
the accuracy of the spellcasting. The werewolf proceeds to
take its turn in combat, clawing at the adventurer for half
their health. The player considers attacking again, but de-
cides that they’re in danger of losing all their health and
instead casts a different spell: while waving one hand in a
circle, they call out the spell “Cure”: the player’s health bar
is restored to its full capacity. After withstanding another
attack by the werewolf, the player attempts “Flame” again,
this time making sure to emphasize the word. It’s more suc-
cessful: the new attack causes significantly more damage
than the first and destroys the remainder of the werewolf’s
health, earning the player a victory.

4. Implementation

Figure 2 shows the layers and components of our system.
It can be separated into a backend developed using Python
3.8, which is responsible for processing input and classify-
ing spells, and a game frontend implemented in Unity with
C#. The Unity game uses HTTP requests (using the Uni-
tyWebRequest library) to communicate with a Flask API in
order to prompt and access the results of the spell recogni-
tion system.

2

Figure 2. System diagram showing components and inputs of game system

4.1. Spell Recognition Backend

4.1.1 Structure

The Python backend runs as a Flask app in the localhost
server, which the Unity frontend interacts with using HTTP
requests. The app itself runs three parallel subprocesses:
the Flask app itself, a main classification loop, and a speech
recording loop.

The classification loop, when triggered, saves hand posi-
tion frames from the Leap Motion Controller while waiting
for the speech recording loop to return a result. It then sep-
arately classifies both forms of input, before combining the
results of the classifiers to determine the spell that should
be returned, if any such match exists. The process shares
its output with the Flask app, so that a GET request is re-
sponded to with the results of the classifier, or a timer state
if the classifier is running. POST requests are used to trigger
the classifier loop.

4.1.2 Classifiers

The spell recognition system combines the results of in-
dependent speech and gesture recognizers to identify the
casted spell. The speech recognition component selects a
set of candidate spells, and the candidate that is scored best
by the gesture classifier is returned.

Audio input from the laptop microphone is converted
into text using Python’s SpeechRecognition library to ac-
cess the Google Web Speech API. Each spell in the system’s
database is marked as a valid candidate if its incantation is

a substring of the returned transcript.
The gesture classifier uses image-based template match-

ing similar to the method used in Mini Project 1 (early
sketch understanding). For each gesture template in the
database, a window of the same time length is slid along a
sequence of recorded hand positions. The 2D points in each
window are compared against the point set of the template
using the Modified Hausdorff distance (MHD) metric:

hmod(A,B) =
1

Na

X

a2A

min
b2B

||a� b||

Both point sets are normalized by horizontal and vertical
scaling. The similarity score of each spell is its minimum
MHD obtained across all windows.

4.2. Game Interface

The Unity game implements the general gameplay logic
as well as the user-facing interface. It is separated into four
distinct scenes: the title screen, an instructions screen, a
Spell Tutor, and the Adventure. The title is accessed upon
starting the game and transitions automatically after a fixed
number of seconds. Meanwhile, the instructions screen pro-
vides a written tutorial explaining how the game should be
navigated and played. Either clickable buttons or speech
commands can be used to switch between the tutorial, the
Spell Tutor, and the Adventure screens.

The game operates on a continuous update loop. Based
on an internal finite state machine, it communicates with the
Python spell recognition backend by repeatedly polling the
API for any detected speech commands or casted spells. In

3

the Spell Tutor, depending on which spell name is clicked
or spoken, an animation demonstrates the required gesture
while the user can make spellcast attempts of their own. In
the Adventure, the player can apply these spells in turn-
based combat against enemy monsters.

4.3. Turn-based Gameplay

Combat encounters use a turn-based spell system, where
the player and enemy alternately take actions. Enemies are
randomly generated and possess statistics such as attack
damage and maximum health. Based on these statistics as
well as those of the player, actions can either deal damage
(decreasing opponent health), heal (increasing own health),
or a combination of both. When the player casts a spell, as
returned by the Python spell recognizer, the spell that was
cast as well as the similarity score obtained by the gesture
classifier determines its effects.

5. User Studies

5.1. Implementation Feedback

Our first main stage of user testing was in the Implemen-
tation Studio, where we had a player try a command-line
version of the game. Here, most of the gameplay mechan-
ics were already implemented but the graphics and instruc-
tions were all text-based in the terminal itself. Our user gave
some key feedback, first criticizing how we were giving in-
structions. Several important points were missing, such as
the user’s hand having to be open and face down while do-
ing the gesture, the gesture and speech should be simulta-
neous, and the game mechanics themselves were not very
well balanced. He specifically said to add more variety to
the moves and to make the spell names more different, since
heal and shield were confused by the system. We prioritized
this feedback entering our final version.

5.2. Project Feedback

For our final user tests, we had users play through vari-
ous adventures and test the extra features, such as the Spell
Tutor. Although improving the instructions for the users
was a key task we focused on for this version, the play-
ers specified that feedback from the system was still lack-
ing. Specifically, they wanted more feedback on why spells
would sometimes not be recognized, and would have pre-
ferred to see the speech detected. Additionally, we added
more spells with different effects, but did not teach the users
these effects. In turn, the players mentioned understanding
what different spells did was a point of confusion. The im-
pact of spellcasting accuracy was not obvious as well, and
users did not realize that it impacted the amount of damage
done. Finally, players found it difficult to build a strategy
within the game. One phenomena that stood out to us was
that different players would be able to perform one spell

consistently and struggle with another during the Spell Tu-
tor, and then during an adventure, they would exclusively
use the one they had become comfortable with instead of
combining them and developing a strategy.

6. Discussion

Figure 3. Diagram of spell results by round before practicing using
the spell tutor

Figure 4. Diagram of spell results by round after practicing using
the spell tutor

6.1. Performance

Our system generally worked well at recognizing the var-
ious spells, consistently outputting the correct results and
allowing for seamless gameplay. Spells that sounded simi-
lar or had similar gestures were sometimes confused by the
system, due to the nature of the recognition, so we focused
on creating spells that were as different as possible in these
respects. With the final system, we ran analytics on our
user study to identify how well the game detected the cor-
rect spells, both before and after the player practiced spells
in the Spell Tutor.

4

Before the user practiced spells in the spell tutor, in one
adventure the player successfully cast a spell 9 out of 18
rounds, yielding a rate of 50%. A diagram of these results
by round is shown in Figure 3, where the point colors cor-
respond to the attempted spell. Specifically, ”cure” is dis-
played as a green point, ”flame” is red, ”lightning” is or-
ange, and ”leech” is blue.

After the Spell Tutor, our user successfully cast a spell
27 out of 32 rounds, yielding a rate of 84.38%. This pro-
vided us with a baseline accuracy of the system and demon-
strated that a large limiting factor was the performance and
understanding of the player themselves on how to perform
the spells. Another diagram of these results by the round is
shown in Figure 4, with the same colors corresponding to
spells.

6.2. Successes

Building the speech recognition system and gesture
recognition system themselves was successful, especially
since we focused on modularity while developing the game
and we were able to use much of what we had learned in
the class to build up both recognition systems. Addition-
ally, creating the game mechanics and rules was interesting
and exciting. We knew we wanted to have a Spell Tutor to
teach players the spells ahead of time, as well as create dif-
ferent enemies with their own advantages to keep the game
exciting and interesting. By adapting a simple turn-based
combat system, we were able to focus less on teaching play-
ers about how to battle and more on how to improve their
spellcasting. Users reported being thoroughly immersed,
and would go through several rounds of the game without
us prompting them to continue. Choosing to have new en-
emies spawn immediately after the player beat one ensured
players were caught up in the fast-paced nature of the game
and stayed engrossed in mastering spells and defeating the
opponents.

6.3. Challenges and Modifications

Our first major roadblock was in combining the speech
and gesture recognition systems. Because our proposed
method of spellcasting required players to both speak the
incantation and perform the gesture at the same time, we
looked into methods on how to run the functions asyn-
chronously and combine their outputs to detect one spell
and its accuracy. Originally, we intended to provide some
feedback to the user on how to improve their spellcasting
but this proved to be difficult on the gesture side, since it
felt out of the scope of the project to map the player’s move-
ments to the intended gesture, understand which part of the
gesture this was, and translate to the user how to fix the
spell. However, it was an easier task to provide the tran-
script of the detected speech to the user to allow them to see
any mistakes. In the end, we chose to modify the project

and remove gesture feedback. Gesture feedback was an in-
teresting next step our system turned out not equipped to
handle. However, it would be exciting to implement and
provide very concrete feedback to the player.

Another challenge was simultaneously starting our game
system and running the Flask server. The game system was
necessary to allow the game mechanics to run smoothly,
and the Flask server was necessary to communicate with
the Unity game UI. Unfortunately, we realized we could
not run both asynchronously on the same processor, as both
were blocking. We turned to multiprocessing to allow them
to run together, which ended up working well and did not
result in many modifications.

A separate modification moving from the implementa-
tion studio to the project studio was to remove several of
the character attributes, such as intelligence, strength, and
charisma. We were using these attributes to impact the ef-
fects of different spells, but after receiving feedback from
the command-line implementation that we needed to focus
more on balancing the game, we decided to simplify the
spells slightly to focus more on the spellcasting itself and
the game’s simplicity. This is another feature we would like
to bring back, as it creates a layer of personalization and
individuality to each character and encourages immersion.

6.4. Interesting Failure

One failure we faced was not on the technical side, but
on the gameplay itself. Using the quality of spellcasting in
the gameplay itself to motivate players to truly perfect and
focus on their spells was a key draw that we emphasized
in our system design. We wanted to provide the player with
feedback and incentives to immerse themselves in the game,
so using the recognition accuracy as a metric for spellcast-
ing quality, which would in turn either strengthen or weaken
the spell’s effects accordingly, was very unique to our sys-
tem and hard to replicate outside of this type of multimodal
gameplay.

However, after we completed our user studies, we
learned that our players did not realize that accuracy was
playing a role in how strong the spells they were casting,
and thus did not create the immersive effect we anticipated.
This was an interesting failure as it demonstrated how we,
as the developers, assumed users would understand and in-
terpret the displayed metric as intended, but the users were
so engrossed in the fast-paced gameplay that they did not
dwell on the accuracy metric. We learned not to assume
user prior knowledge and to create a clearer and more in-
formative UI, and we did add a warning about the effect of
spellcasting accuracy to the preliminary instructions.

7. Future Work

Looking into the future, there are a number of changes
and additional features we would like to work on imple-

5

menting. They are either features that we could not achieve
within the original scope of the project due to time or re-
source limitations, or changes brainstormed based on feed-
back from user studies.

7.1. Further Spell Development and Balancing

One of the main pieces of feedback we received from
user testing focused on balancing the game mechanics to
make it more fun and challenging from a strategic stand-
point. With all spell effects centered around either dam-
aging or healing, our players typically determined that one
or two spells were superior choices and used them repeat-
edly without ever finding a need to try the other spells. This
made the game repetitive and tiring to play after a few lev-
els.

In addition to tweaking the numbers and effects of our
existing spells so that none of them are obviously ”better”
than others, we also have some ideas for additional types of
spells that can introduce more variety to Kalpana’s game-
play. For example, spells might temporarily weaken the op-
ponent, have a chance of stunning them, or create a shield
to reduce the effect of the next attack.

A distant stretch goal of our initial project proposal that
we did not end up achieving would also help to make the
game more interesting and complex. This was to add spells
where the speech recognition aspect is more freeform com-
pared to our current spells, where the only task is to speak
the incantation. Instead, spells might rely on the user com-
ing up with their own phrase tailored to the situation, with
variable effects based on word choice, content-based sen-
timent analysis, or emotion detection. This feature would
rely on more complex natural language processing, but due
to the modularity of the system could be simply built on top
of the speech recognition component of the Python back-
end.

7.2. Better Spellcasting Feedback

As discussed in Sections 5.2 and 6.4, players were often
confused when testing our game because it didn’t make it
clear that the accuracy of their spellcasts had an impact on
the strength of their effects. One future goal for developing
the game is to make this more clear, not only in the instruc-
tions but also through UI changes. For example, we can add
sound effects and scale the lighting flare effect when a spell
is cast so that more powerful spells are louder and brighter.
To make it obvious what each spell does, we can add a writ-
ten description for each one in the Spell Tutor, that can also
describe how the effect is influenced by spellcasting accu-
racy.

Another aspect of this idea is improving the feedback as
to why a player’s spell scored low, so the player can un-
derstand how to improve their spellcasting. Spellcasting
accuracy currently depends on three main factors: spoken

incantation, gesture shape, and gesture timing. For the first,
we can display detected speech on-screen after each turn.
For the second, we want to have an animation similar to the
Spell Tutor, which traces the gesture done by the player so
it can be compared to the template. This would also help to
provide feedback on timing, but we can also modify the ges-
ture classification algorithm. Instead of computing MHD
for a fixed-size sliding window, we can instead try different
sizes of windows to determine if the gesture matches better
when shortened or lengthened, and suggest accordingly for
the player to slow down or speed up their hand gesture.

7.3. Game Progression and Difficulty

In terms of overall game design and gameplay, we cur-
rently provide an infinite series of randomly generated ene-
mies for the player to fight against. However, the combat
encounters are ultimately the same difficulty throughout,
and beyond beating an enemy, there is no way to ”beat” the
game. To make Kalpana into a more challenging and en-
gaging game, we want the level of difficulty to increase as
the player progresses through the game and improves their
spellcasting skill.

Scaling difficulty can be implemented by changing the
enemy statistics so that they have more health, damage, and
other attributes as more enemies are defeated. However, the
battle still needs to be fair. To make the game simulate an
actual adventure, we would like a larger catalogue of spells
where individual spells are unlocked throughout the game.
This would incentivize the player to learn new spells instead
of relying on just a couple of them, and provide room for
more powerful and complex spells to be added to the game
without upsetting its balance.

8. Tool Descriptions

The table of tools used in this system is attached at the
end of this paper as an appendix.

9. Conclusion

We were able to build a full, robust, and immersive spell-
casting adventure game that used multimodal input to craft
an engrossing and exciting experience. By combining ges-
ture and speech recognition, we successfully taught our
players how to use different spells to take down their en-
emies in the game.

Through various rounds of user testing and iterating on
the game design, Kalpana has many different features pack-
aged into one immersive game. By incorporating feedback
from playtesters of the game and our peers in the classroom
watching our presentations, we are excited to present this
game and continue developing it.

6

References

[1] Pinkesh Badjatiya, Shashank Gupta, Manish Gupta,
and Vasudeva Varma. Deep learning for hate speech
detection in tweets. CoRR, abs/1706.00188, 2017. 1

[2] Isabel Cachola, Eric Holgate, Daniel Preoţiuc-Pietro,
and Junyi Jessy Li. Expressively vulgar: The socio-
dynamics of vulgarity and its effects on sentiment anal-
ysis in social media. In Proceedings of the 27th Interna-
tional Conference on Computational Linguistics, pages
2927–2938, Santa Fe, New Mexico, USA, Aug. 2018.
Association for Computational Linguistics. 1

[3] Stephen M. Chang. Using gesture recognition to con-
trol PowerPoint using the Microsoft Kinect. PhD the-
sis, Massachusetts Institute of Technology, Cambridge,
MA, USA, 2013. 1

[4] Nicholas Gillian and Joseph A. Paradiso. The ges-
ture recognition toolkit. J. Mach. Learn. Res.,
15(1):3483–3487, jan 2014. 1

[5] Steven Daniel Lovell. A system for real-time ges-
ture recognition and classification of Coordinated Mo-
tion. PhD thesis, Massachusetts Institute of Technol-
ogy, Cambridge, MA, USA, 2005. 1

[6] Ying Yin. Real-time continuous gesture recognition
for natural multimodal interaction. PhD thesis, Mas-
sachusetts Institute of Technology, Cambridge, MA,
USA, 2014. 1

7

Package/Tool/Library Where is it available? (eg
url)

What does it do? How well did it work? Did it work out of the
box? If not, what did you

have to do to use it?

Python 3.8 x86-64 https://www.python.org/
downloads/release/
python-380/

Python programming
language

As expected Yes

Unity https://store.unity.com/
#plans-individual

2D and 3D game engine As expected Yes

Leap Motion Tracking
Software v2.3.1

https://
developer.leapmotion.co
m/releases

Runs the Leap Motion
Controller on computer

Well, although the Leap
Motion Controller
tracked some hand poses
better than others.

Mostly. Needed to check
some settings (e.g.
“Allow Background
Apps”) in the Leap
Motion Control Panel.

Leap Motion SDK https://developer-
archive.leapmotion.com/
get-started (SDK)
https://
support.leapmotion.com/
hc/en-us/articles/
360004362237
(instructions for
generating a wrapper)
https://github.com/
Cipulot/Leap-Motion-
Python-3 (third-party
generated wrappers for
Python 3.7+, untested)

Allows us to access
input data from the Leap
Motion Controller using
Python.

It worked well once it
was set up, but setup
took a lot of additional,
unexpected effort.

No, since the Leap
Motion SDK is only
available for Python 2.7.
Since we wanted to use
Python 3.8, we followed
instructions to generate a
custom wrapper for our
Python version, which
was tricky to make
work. We would
recommend using a pre-
made wrapper as linked,
instead of doing as we
did.

https://www.python.org/downloads/release/python-380/
https://store.unity.com/%23plans-individual
https://developer.leapmotion.com/releases
https://developer-archive.leapmotion.com/get-started
https://support.leapmotion.com/hc/en-us/articles/360004362237
https://github.com/Cipulot/Leap-Motion-Python-3

Your project name: Kalpana: A Multimodal Spellcasting Adventure Game

Project author(s): Sohini Kar, Lilian Luong

SpeechRecognition
library

https://pypi.org/project/
SpeechRecognition/

Python library for
accessing various speech
recognition engines/
APIs

There was more latency
than expected which we
had to design our system
to work around. The
accuracy of speech-to-
text was good in a quiet
environment.

Yes

JSON .NET for Unity https://
assetstore.unity.com/
packages/tools/input-
management/json-net-
for-unity-11347

Unity package for
processing JSON data.

Worked well, though
there is little
documentation.

The documentation isn’t
clear you need to add
“using Newtonsoft.Json”
to the code, and the
package isn’t maintained
for current versions.
There were a few issues
getting the package to
work.

Flask https://
flask.palletsprojects.com
/en/2.1.x/

Microframework for
building web apps (in
our case, a web API) in
Python.

Worked well. Yes

NumPy https://numpy.org/install/ Python library for
efficient array
manipulation

As expected Yes

https://pypi.org/project/SpeechRecognition/
https://assetstore.unity.com/packages/tools/input-management/json-net-for-unity-11347
https://flask.palletsprojects.com/en/2.1.x/
https://numpy.org/install/

