
Lyric Classification and Genre Style Transfer

Tiffany Chen
tiffc@mit.edu

Sohini Kar
skar@mit.edu

Julia Wagner
jnwagner@mit.edu

Crystal Wang
crystw@mit.edu

Abstract

In this paper, we apply a variety of model ar-
chitectures to the problems of song lyric clas-
sification and generation. For the multi-class
classification task, we use a baseline RNN
model with Word2Vec embeddings and a more
complex transformer-based model to classify
the genre of a song based on its lyrics. The
resulting models have drastically different per-
formances and we see a significant improve-
ment in the transformer model over the RNN
model. Meanwhile, for song lyric generation,
we apply techniques from other text style trans-
fer papers in order to generate new song lyrics
based on the original lyrics and the desired
genre of the output. Unfortunately, while these
techniques do well in terms of style transfer,
they lack content retention and are not usu-
ally well-formed sentences. The results from
both of these problems suggest that there are
distinct semantic differences between songs in
different genres that can be detected by ma-
chine learning models. 1

1 Introduction

New techniques and advancements within the field
of natural language processing (NLP), such as
attention-based transformer models like Google’s
BERT, have been highly successful within a variety
of classic NLP tasks. We apply these methods in
juxtaposition with traditional machine learning ar-
chitectures in order to tackle the problems of genre
classification and song lyric generation.

Classification involves prediction from some set
of labels for a given text input. Within the context
of this paper, we will be predicting song genres
given their lyrics as the input using a variety of
deep learning architectures such as recurrent neural
networks (RNNs) and transformers, sometimes in
tandem.

Text generation is the task of outputting text that
is indistinguishable from regular human-generated
language. Here, we will study a subset of text
generation problems called text style transfer. Text

1Code can be found at https://github.com/sohinik/6.864-
lyric-analysis

style transfer is the changing of the qualitative prop-
erties of a body of text while maintaining the origi-
nal content and context. In this paper, we will apply
known text style transfer techniques in order to pro-
duce new song lyrics that preserve the content of
the original input lyrics while introducing the style
of the input genre.

This paper is structured as follows. Section 2 dis-
cusses prior work and research within the areas of
classification and text-style transfer problems. Sec-
tion 3 describes the data set used to train our models
and explains the steps taken to clean and process
this data. Section 4 walks through the architecture
of the baseline and improved classification models,
as well as implementation details and evaluation re-
sults. Section 5 mirrors the layout of section 4 but
addresses the generation models instead. We con-
clude with a discussion of conclusions and future
work in section 6.

2 Previous Work

2.1 Lyrical Classification

Previous lyrical classification research focused on
supervised learning techniques such as support vec-
tor machines, k-nearest neighbors, and naive Bayes.
Fell and Sporleder (Fell and Sporleder, 2014) clas-
sify among 8 genres using n-grams with hand se-
lected features to help represent vocabulary, style,
structure, and semantics. Ying et al. (Ying et al.,
2012) use part-of-speech tags to classify among 10
genres using SVMs, k-NN, NB with a highest accu-
racy of 39.94%. McKay et al. (McKay et al., 2010)
use hand selected features in lyrics to produce clas-
sification accuracies of 69% amongst 5 genres and
43% amongst 10 genres. More recently, Bužić and
Dobša (Bužić and Dobša, 2018) use naive Bayes to
predict song performer based solely on song lyrics.

With the development of deep-learning networks
such as convolutional neural networks, RNNs, and
transformers, lyric classification has highly benefit-
ted, allowing for higher accuracy with more genres.
Sigtia and Dixon (Sigtia and Dixon, 2014) builds
a random forest classifier on the hidden states of

a neural network, reporting an accuracy of 83%
among 10 genres. Li et al. (Li et al., 2018) use
a CNN to embed features, achieving an accuracy
of 84% over 10 genres. Last, Yang et al. (Yang
et al., 2016) uses hierarchical attention networks
to classify documents; when applied to lyric clas-
sification via Tsaptsinos (Tsaptsinos), the model
achieves 49% accuracy with 20 genres.

Our classification model builds on the previous
work done on deep-learning models, using hidden
states from an RNN to determine the genre in our
baseline and building onto it with transformer hid-
den states.

2.2 Text Style Transfer

Methods used in the problem of style transfer gen-
erally include encoder-decoder frameworks, where
the encoder maps the input into a style-independent
vector representation and the decoder outputs text
with the desired style inputted. Many previous
solutions utilize disentanglement, which uses a dis-
criminator to extract style features from the training
text and input these features into unbiased text to
include that style. Shen et al. (Shen et al., 2017)
use a cross-aligned autoencoder with adversarial
training to learn a shared latent content distribution
and a separate latent style distribution. Hu et al.
(Hu et al., 2017) propose a different solution: a
neural generative model that combines variational
autoencoders and holistic attribute discriminators
to impose semantic structure.

Alternatively, a discriminator can remove style
features from a styled input; the new style is then
added in the decoding stage. John et al. (John
et al., 2019) use a deterministic autoencoder and a
variational autoencoder to get disentangled latent
representations.

There are also various techniques that use pre-
trained discriminators and thus do not manipulate
the latent representation of inputs. Xu et al. (Xu
et al., 2018) utilize a cycled reinforcement learning
method for unpaired sentiment-to-sentiment trans-
lation. Li et al. (Li et al., 2018) extract content
words by deleting phrases a strong attribute value,
retrieve new phrases associated with the target at-
tribute, and use a neural model to combine these
into a final output.

However, because of the difficulty of fully disen-
tangling inputs, there are also several proposals that
do not use disentanglement. Lample et al. (Lample
et al., 2019) reduce text style transfer to an un-

supervised machine translation problem by using
denoising autoencoders (Vincent et al., 2008) and
back-translation (Sennrich et al., 2016). Dai et al.
(Dai et al., 2019) use transformers to train a style
transfer system. Kim and Sohn (Kim and Sohn,
2020) separate the model into two tasks, sentence
reconstruction using transformers and a classifier
style module, to allow for variable style strength.

Our lyric style transfer model builds on the
encoder-decoder architecture that previous solu-
tions use, with the encoder acting as the discrimi-
nator.

3 Data

3.1 Dataset

We use a Kaggle dataset called ”Multi-Lingual
Lyrics for Genre Classification” (Bejan, 2021)
which contains over 290,000 datapoints, each rep-
resenting a song with metadata such as the genre,
artist, language, and lyrics. Each song’s genre is
taken from the respective artist’s most dominant
genre. Although the dataset offers two files of data,
”train.csv” and ”test.csv”, we used only ”train.csv”
as the test data set was missing the genre of each
datapoint.

3.2 Data Cleaning

We filter out the data in the following ways:

Language

We use only English songs for the sake of simplic-
ity and for performance purposes. Our models are
unlikely to perform well when given datapoints
across several languages and our pre-trained word
embedding models are limited to the English vo-
cabulary.

Features

We delete all other features except the genre and
the lyrics, then filter out datapoints that are missing
either the genre or the lyrics.

Genre

For each problem, we select a different subset of
genres to examine. For classification, the genres
are selected based on the number of datapoints
within each genre. For generation, we select genres
based on our classification model’s ability to distin-
guish between them. More detail about the genre
selection process is included in sections 4 and 5.

Figure 1: This matrix stores the word similarity of each pair of genres. The value at row i and column j is the
percentage of words in the vocab of genre i that are shared by genre j

Lyrics
There are some datapoints where the song lyrics
contain some additional text, such as guitar chords,
that were probably a side effect of the data col-
lection process for this dataset. We remove these
datapoints before conducting any further data pro-
cessing.

When splitting lyrics into individual words for
vocabulary creation, we separate based on whites-
pace (e.g. a space or a newline) and we strip the
ends of any of the following symbols: () , . /
— { } − ‘ ′” :; ?!#@$%&̂ ∗ .

3.3 Data Processing

In addition to data cleaning, we also process the
data in the following ways:

Training and Testing Split
After cleaning our data, we randomly split the data
into training and testing at a ratio of 4:1 (i.e. 80%
of the data is training data and the remaining 20%
is testing data).

Classification Song Separation
For the classification task, we split each song up
into ”stanzas” of 150 words per stanza in order to
address two main problems: vanishing gradients

and token limits. By dividing each song into more
datapoints, we could avoid the problem of vanish-
ing gradients that occurs when long sequences are
fed in RNNs and we can circumvent the token limit
for DistilBERT, a transformer we use in the classi-
fication problem.

A potential problem with splitting a song into
more datapoints arises when these datapoints are in
both the training and testing sets. If there are stan-
zas from the same song in both datasets, our models
could end up performing well because it recognizes
words and themes in a specific song instead of the
overall lyrical style of the genre. Therefore, we
perform the song splits after separating the data
into training and testing data.

Generation Song Separation
For the generation task, we can no longer split each
song into 150 word excerpts because we need to
maintain the grammatical accuracy and sentence
structure of our input in order to achieve accurate
outputs. In addition, we no longer tokenize our in-
puts for DistilBERT, since the token limit prevents
us from properly generating longer sentences.

Therefore, we separate each song based on new-
line characters in order to divide the lyrics into in-
dividual lines, removing duplicates. We then treat

Genre Distribution
Genre Datapoints
Rock 107145
Pop 86298

Metal 19133
Jazz 13314
Folk 8169
Indie 7240
R&B 2765

Hip-Hop 2238
Electronic 2005
Country 1890

Total 250197

Table 1: Genre distribution for all datapoints in our
original data set

each line as a datapoint and we also ”translate”
future inputs line by line and construct the final out-
put by appending the line outputs. As a side effect
of this new splitting policy, we are limited in the
genres that are available to us since some genres
do not have songs that are newline-delimited. Our
final list of available genres is as follows: folk, jazz,
metal, pop, and rock.

Genre Uniformity

The final data processing involves making the genre
distribution uniform within the training and testing
datasets. We do so in order to prevent the models
from learning the frequency of each genre and hav-
ing an incorrectly high accuracy as a result. A side
effect of this limitation and the stanza separation
is that the resulting training and testing data sets
will not have an exact ratio of 4:1 but the actual
ratios are relatively close at 3.92:1 and 4.04:1 for
the classification models.

3.4 Data Analysis

In this subsection, we’ll analyze our data set distri-
bution and some of the features of each genre.

Table 1 shows the distribution of datapoints
across the genres after data cleaning, sorted from
most datapoints to least. We can see that the most
common genre is rock and the least common is
country, but we can increase the number of data-
points (and avoid vanishing gradients) by splitting
each song up into multiple datapoints as mentioned
before.

Figure 1 demonstrates the vocabulary similarity
across genres. The value of the similarity matrix at

row i and column j is calculated using the follow-
ing formula

Similarityij =
|Si ∩ Sj |
|Si|

where Si is the set of words used in songs be-
longing to genre i.

As we can see from the figure, the row of sim-
ilarity values for hip-hop is the lightest in color,
demonstrating that hip-hop’s vocabulary has the
highest percentage of unique words even compared
across all other genres. Meanwhile, the highest vo-
cabulary similarity (excluding the values along the
diagonal that represent trivial 100% self-similarity)
occurs between R&B and hip-hop, where R&B has
the lowest percentage of unique words compared
against hip-hop. We therefore leave out R&B from
our classification models and instead select the gen-
res with the lowest vocabulary similarity.

4 Classification Models

We construct two main classification models: a
simple model using RNNs to serve as a baseline
and a more complex transformer-based model with
several layers. For this problem, we focus on the
following six genres: metal, jazz, hip-hop, pop,
folk, and country. These genres were selected be-
cause they either had the most datapoints in our
cleaned dataset or they were empirically known to
have lyrical differences.

4.1 Baseline Model

4.1.1 Architecture
To represent the words in our text, we use Google’s
pretrained Word2Vec representations, pretrained on
over 100 million words in the Google News dataset.
The model contains a continuous bag-of-words of
30 million words as 300-dimensional vectors.

In our baseline model, seen in figure 2, we define
a GRU with the hidden size being the number of
genres we want to classify (6). This GRU acts as
an encoder that transforms our text into a vector
representation, where each number in the vector
is a logit for the likelihood that the inputted text
is the corresponding genre. We use two layers
and bidirectionality to create a fuller picture of our
input.

4.1.2 Implementation Details
Table 2 shows the genre distribution in our training
and testing data. We can see from the table that

Figure 2: Architecture for the baseline classification model

Baseline Model
Genre Train Test

Country 2625 650
Hip-Hop 2625 650

Pop 2625 650
Jazz 2625 650

Metal 2625 650
Folk 2625 650
Total 15750 3900

Table 2: Genre distribution for training and testing data
for the baseline classification model

the ratio of training to testing data is 4.04 : 1 so
we know that the stanza separation step did not
significantly alter the data split.

Figure 3 shows the training loss over the 2955
steps, each with a batch size of 16, covering 3
epochs. We use an Adam optimizer with a weight
decay of 1e − 5, and epsilon of 1e − 6 and a
warmup rate of 0.05.

To calculate loss, we convert every label to its
corresponding numerical ID and then use cross-
entropy loss in order to softmax the output logits
and compare it against the correct label ID.

As we can tell from the training loss, the model
is not improving over time even on the training data
set.

4.2 Transformer Model
4.2.1 Architecture
To represent the words in our text, we use Dis-
tilBERT’s pretrained tokenizer. Additionally, we
use DistilBERT’s pretrained model as our language
model. These are trained on the cased English
language and then distilled from Google’s BERT
model. The model has 6 layers and a hidden size
of 768 by default.

In our model, we put our inputs through the pre-
trained DistilBERT model, which gets us the hid-

Figure 3: Training loss per step for the baseline classi-
fication model

den states of each token in our input. We take the
last hidden state to maximize the amount of context
in our hidden states. We then put the last hidden
state through a dropout layer to reduce overfitting
in our model.

With this, we have the hidden states of all words
in our inputs (i.e. seq len x hidden size).
We want to flatten this into a hidden encoding of the
sentence (i.e. 1 x hidden size). To do this,
we put our hidden states into a GRU that acts as an
encoder. We use two layers and bidirectionality to
get a fuller picture of our input.

Lastly, we put our encoded input into a linear
layer that maps the encoding into a vector with
the length being the number of genres we want to
classify (6). This outputted vector represents the
logits of the input being that genre.

4.2.2 Implementation Details
Table 3 shows the genre distribution in our training
and testing data. We can see from the table that
the ratio of training to testing data is 3.92 : 1 so
we know that the stanza separation step did not
significantly alter the data split.

Due to the nature of our bidirectional, bilayered
GRU encoder, we get hidden states of dimension

Figure 4: Architecture for the transformer classification model

Transformer Model
Genre Train Test

Country 2609 666
Hip-Hop 2609 666

Pop 2609 666
Jazz 2609 666

Metal 2609 666
Folk 2609 666
Total 15654 3996

Table 3: Genre distribution for training and testing data
for our transformer classification model

Figure 5: Training loss per step for the transformer clas-
sification model

(2 * 2, batch size, 768). Since we only
care about the hidden state of the last layer, we
grab the 2 hidden states from the two final layers
(one for each direction) and we sum them to get an
aggregate hidden state. We then pass this into our
linear layer to generate our final logits.

Figure 5 shows the training loss over the 979
steps, each with a batch size of 16, covering 1
epoch. We use an Adam optimizer with a weight
decay of 1e − 5, and epsilon of 1e − 6 and a
warmup rate of 0.05. We also use a learning rate
scheduler from the transformers library.

To calculate loss here, we also convert every la-
bel to its corresponding numerical ID and then use

cross-entropy loss in order to softmax the output
logits and compare it against the correct label ID.

As we can tell from the training loss, the model
is improving over time and we can attribute some
of the volatility to the small batch size.

4.3 Results
We evaluate the success of our model through ac-
curacy, precision, recall, and F1 scores.

Accuracy is the percentage of test inputs that
were correctly labelled or, in other words, the num-
ber of correctly labelled inputs summed across all
genres divided by the total number of inputs. On
our confusion matrix, accuracy is the sum of the
numbers on the diagonal divided by the sum of
every number in the matrix.

Accuracy =

∑
genre # of true positives in genre

of datapoints

Precision is a metric that is different for each
genre, and it is the percentage of the songs pre-
dicted to be in that genre that were actually in that
genre. On our confusion matrix, precision is the
number in each column of the diagonal divided by
the sum of every number in that column.

Precisiongenre =
of true positives in genre
of datapoints in the genre

Recall is also a metric that is different for each
genre, and it is the percentage of songs in the genre
that were predicted to be in that genre. On our
confusion matrix, recall is the number in each row
of the diagonal divided by the sum of every number
in that row.

Recallgenre =
of true positives in genre

of datapoints predicted in genre

Finally, F1 scores are the harmonic mean of the
precision and the recall.

F1genre = 2 ∗
Recallgenre ∗ Precisiongenre

Recallgenre + Precisiongenre

4.3.1 Baseline Model Analysis

Table 4 shows the accuracies of the baseline model.
Our baseline model’s accuracy is not better than
randomly assigning genres and thus it fails at clas-
sifying lyrics.

In fact, since the distribution across predicted
genres, shown in Figure 6, is the same in every row,
it appears that the genre of the input has little to no
impact on the predicted genre.

The model may then be making its predictions
for each genre based on a feature that is uniformly
random across all genres. For example, one possi-
ble feature could be that the model predicts ”coun-
try” when the length of the sequence is less than
20 words, but this is unlikely to be correlated with
the genre and rather is dependent on the input.

We also notice that, despite being given the same
number of genres in the training data, the model
disproportionately predicts the genres folk, hip-
hop, and jazz. It is possible that the last few inputs
received by the model were disproportionately in
those three genres and therefore the model was
significantly altered in the last few batches.

Another explanation could be that the testing
data set is skewed towards the features that the
RNN has learned. However, repeated training
over several different randomized splits of train-
ing/testing data demonstrates that the model contin-
ues to disproportionately guess a handful of genres
over other genres. Since repeated testing should
decrease the probability of a bad train/test split, we
conclude that this explanation is unlikely to be true.

Additionally, Table 5 shows the precision, re-
call, and F1 scores for the baseline classification
model. Note that the recall for each genre (and
therefore the F1 score) is positively correlated with
the likelihood that the model predicts said genre
(i.e. the darker the corresponding column in the
confusion matrix is, the higher the recall and the
F1 score are). Since the recall is the number of true
positives divided by the total number of data points
in that genre, if the model is disproportionally pre-
dicting a certain genre uniformly, then the number
in the diagonal section would be larger compared
to everywhere else in the row.

Classification Accuracies
Model Accuracy

Baseline 15.64%
Transformer 56.56%

Table 4: Accuracy for the baseline and transformer clas-
sification models

Baseline Classification Model
Genre Precision Recall F1

Country 0.115385 0.041538 0.0611
Folk 0.146259 0.198462 0.1684

Hip-Hop 0.179666 0.198462 0.1886
Jazz 0.163324 0.263077 0.2015

Metal 0.170686 0.141538 0.1548
Pop 0.129167 0.095385 0.1097

Table 5: Precision, recall, and f1 scores for the baseline
classification model

4.3.2 Transformer Model Analysis
Table 4 shows the accuracies of the transformer
model. Our transformer model’s accuracy is sig-
nificantly better than randomly assigning genres,
and we can see a clear diagonal on the confusion
matrix in Figure 7. Thus, our transformer model
was moderately successful at lyric classification.

Using transformers aided in our model’s success
due to its self-attention layer, allowing our model
to focus on words that best indicate genre. Specifi-
cally, using the pretrained DistilBERT model gives
additional context to the lyrics, with pre-trained
attention giving focus to words that are most likely
to be genre indicators.

From our confusion matrix, we can see that folk
is often confused for country. In contrast, country is
not confused as folk nearly as often, although folk
is the genre that country is misclassified as the most.
This is perhaps explained by country music’s roots,
which originated partially from various American
folk music. However, country has since evolved to
include more regional cues from the southern U.S.,
which folk does not have. (Malone, 2003)

As a result, when these cues appear in lyrics (as
they usually do for country music), it is easy to iden-
tify the genre as country but when they are absent
(as they usually are in folk music and sometimes
are in country), it becomes harder to differentiate
between country and folk. We offer this hypothesis
as a potential explanation for why folk is confused
often for country but not vice versa.

To explore the validity of this hypothesis, we

Figure 6: Confusion matrix for the baseline classification model

Figure 7: Confusion matrix for the transformer classification model

analyze the vocabulary of the folk song lyrics that
were misclassified as country songs by calculat-
ing their similarity (as defined in section 3.4) with
actual country songs. The calculated similarity
value is 87.1%, meaning about 87% of the words
in the misclassified folk songs appear in real coun-
try songs as well. This is significantly higher than
the similarity for all folk against all country (in-
stead of just misclassified folk against all country),
which is 46.3% as seen in figure 1.

In contrast, the similarity value with country
songs as the denominator was vastly smaller than
normal, at 17.0%. This tells us that while the mis-
classified folk songs share most of their vocabulary
with country songs, country songs have a much
larger vocabulary that is not dominated by the in-
tersection with those folk songs. Therefore, our
hypothesis appears to hold up under similarity anal-
ysis.

Similarly, pop is often confused for hip-hop. In
contrast, hip-hop is not confused as pop nearly as
often, although pop is the genre that hip-hop is
misclassified as the most. A potential reason for
this is because of hip-hop’s influence on popular
music, as hip-hop is one of the most popular genres
in modern American music. (Rojek, 2011) Another
related phenomenon is hip-hop’s unique vocabulary
that makes it easily differentiable from other genres,
as we saw in section 3.4.

To continue on this point, pop is the most mis-
classified genre; it has the lowest F1 score, as
shown in Table 6. There are several potential rea-
sons that this happens. First, pop often borrows
features from other genres. Additionally, pop’s
largest identifying feature is catchy musical hooks,
which isn’t often captured in the text; adding some
form of audio features to our classification model
may increase pop’s recall and precision. (Rojek,
2011)

Meanwhile, hip-hop and metal have the highest
F1 scores, all above 0.68. As stated before, hip-hop
has a highly unique vocabulary, often using slang
and shortened words, and is easier to differentiate
via text-based analysis as a result. Similarly, metal
typically focuses on darker lyrical theme, espe-
cially compared to the other genres we included in
our classification model, and thus the model most
likely distinguishes metal with works with darker
subjects (Kahn-Harris, 2006).

Generally, we observe that the transformer
model performed much better than the baseline

Transformer Classification Model
Genre Precision Recall F1

Country 0.473348 0.666667 0.5536
Folk 0.468927 0.373874 0.4160

Hip-Hop 0.667606 0.711712 0.6890
Jazz 0.640429 0.537538 0.5845

Metal 0.640605 0.762763 0.6964
Pop 0.488172 0.340841 0.4014

Table 6: Precision, recall, and f1 scores for the trans-
former classification model

Generation Models
Genre Train Test
Jazz 12000 3000

Metal 12000 3000
Total 24000 6000

Table 7: Genre distribution for training and testing data
for our generation models

model and it achieved its best scores on highly
specialized or differentiated genres like country,
hip-hop, and metal. More specifically, genres with
common lyrical themes, such as the ones aforemen-
tioned, proved to be the easiest for the model to
classify. Meanwhile, those that span a wide range
of potential topics, such as pop, or that share roots
with other genres, such as folk, provide more of a
challenge for our model.

5 Generation Models

We construct two main generation models: a set of
autoencoder models using GRUs to serve as a base-
line and a more complex many-to-many translation
model with an encoder-decoder scheme. For this
problem, we focus on the following genres: metal
and jazz. These genres were selected because of
their success in the classification model.

Table 7 shows the genre distribution in our train-
ing and testing data. We are capped at around
15,000 data points due to RAM capacities. Thus,
we choose to have 12,000 training data points and
3,000 testing data points, to maintain a 4:1 ratio for
training to testing data.

5.1 Autoencoder Model

5.1.1 Architecture
For each genre, we train an autoencoder. These
autoencoders build our encoders and decoders for
prediction, where we take the encoder of our input

genre and the decoder of the desired genre to get
our output, as shown in figure 8.

To represent the words in each genre, we use an
embedding layer that we train ourselves. We use
a different embedding layer for the encoder and
decoder; thus, altogether, each genre model has 2
embedding layers.

When training our models, we put our given in-
put through the encoding embedding layer, which
gets us the embeddings for each word. Then,
we put this embedding input through our encoder,
which is a bidirectional bilayered GRU. This gives
us encoded outputs and hidden states, which we
pass along with the decoder embedded input to our
decoder. The decoder, with teacher forcing, goes
through each word in the given input. First, it puts
the word input and the encoder states through our
attention model, based on Bahdanau attention, to
get the attention context and probabilities. With
this, we input the attention context and the previ-
ous embedding into a bidirectional bilayered GRU,
giving us an output and a hidden state. We get the
pre output by combining the GRU output, previ-
ous embedding, and the attention context into a
dropout layer (to prevent overfitting) and a linear
layer, mapping it to a hidden state. With these con-
catenated hidden states (one for each word), we put
them through a generator, which gets the logits for
each word being at that spot by putting the hidden
states through a linear layer, expanding the states
to the vocab size, and a softmax layer.

To text-style transfer on these models, we re-
trieve the encoder and its corresponding embed-
ding layer from the input genre and the decoder, its
corresponding embedding layer, and the generator
from the output genre. We then run the same steps
as with training.

5.1.2 Implementation Details
When getting the vocabulary for our genres, we
take the 7000 most frequent words to prevent GRU
memory issues.

Due to the nature of our bidirectional, bilayered
GRU encoder, we get hidden states of dimension (2
* 2, batch size, hidden size). Since
we only care about the hidden state of the last
layer, we concatenate the 2 hidden states from the
two final layers (one for each direction), result-
ing in a dimension of (2 * 2, batch size,
hidden size). We then pass them through
a linear layer bridge to get a final encoder hid-
den state of dimension (2 * 2, batch size,

hidden size).
In the decoder, after retrieving the outputs from

the GRU, we concatenate the outputs with the at-
tention context and the previous word embedding
before passing that through a linear layer, to take
into account the most important information to get
the logits.

To calculate loss here, we compare the original
input to the output using negative log likelihood
loss. Figures 12 and 10 show the training loss over
steps for the autoencoders, each with a batch size of
64, covering 10 epochs. We use an Adam optimizer
with a learning rate of 1e− 3. As we can see from
the training losses, the models are improving over
time.

When decoding our logits, we use a greedy de-
code to take the most likely word for each timestep
until an EOS token is reached. We use greedy de-
code for memory purposes.

5.2 Genre-to-Genre Model

5.2.1 Architecture
For this model, we train a many-to-many transla-
tion model with several linear layers, encoders, and
decoders, one for each genre. This is shown in
figure 11.

Unlike our previous models, we pass in our lyrics
as one-hot vectors instead of tokens, to allow our
model to predict based on word logits. Thus, to
embed the words in each genre, we use a linear
layer mapping from vocab size to embed size. We
use a different linear embedding layer for the en-
coder and decoder; thus, altogether, each genre has
2 linear embedding layers.

To use this model, we put our given input
through the encoding linear embedding layer for
our input genre, which gets us the embeddings
for each word. Then, we put this embedded input
through our input genre encoder, which is a bidi-
rectional bilayered GRU. This gives us encoded
outputs and hidden states.

Then, we pass along the encoder states to the
output genre decoder, along with the output genre
linearly embedded decoder input. The decoder,
with teacher forcing, goes through each word in the
given input. First, it puts the word input and the
encoder states through our attention model, based
on Bahdanau attention, to get the attention context
and probabilities. With this, we input the attention
context and the previous embedding into a bidi-
rectional bilayered GRU, giving us an output and

Figure 8: Architecture for the autoencoder generation model

Figure 9: Training loss per step for the metal autoen-
coder generation model

Figure 10: Training loss per step for the jazz autoen-
coder generation model

a hidden state. We get the pre output by combin-
ing the GRU output, previous embedding, and the
attention context into a dropout layer (to prevent
overfitting) and a linear layer, mapping it to a hid-
den state.

With these concatenated hidden states (one for
each word), we put them through a generator,
which gets the logits for each word being at that
spot by putting the hidden states through a linear
layer, expanding the states to the vocab size, and a
softmax layer.

5.2.2 Implementation Details
When getting the vocabulary for our genres, we
take the 7000 most frequent words to prevent GRU
memory issues. We choose to share the vocabulary
between metal and folk songs to have logits for
each word correspond to the same word, allowing
us to calculate cycle loss (discussed below).

Much of the implementation details for the au-
toencoder discussed in section 5.1.2 applies here,
particularly the discussion of the encoder-decoder
architecture.

For this model, we use two loss functions. Our
first loss function is self loss. This is when we put
the input through the model with the same source
and target genre before comparing the original in-
put to the output using negative log likelihood loss,
like for our autoencoders. Our second loss is cycle
loss. For this loss, we define an intermediate genre
that we translate the input to. Once we get that
output, we put it through the model again with our
target genre being the original input genre. We then
compare the original input to the final output using
negative log likelihood loss. These both focus on
preserving semantic meaning when translating text
into different genres, with a hope that the self loss
introduces some innate decoding that will corre-
spond to style. They would be strengthened by the
third type of loss discussed in future steps.

Figure 12 shows the training loss over steps for
the genre-to-genre model, each with a batch size of
32, covering 5 epochs. We use an Adam optimizer
with a learning rate of 1e− 3. For each epoch, we
train on the jazz dataset before the metal dataset.
Thus the spikes in the graph are when we switch
the dataset we are using. Still, as we can see from
the training loss, the model is improving over time.

Like our autoencoder, when decoding our logits,
we use a greedy decode to take the most likely word
for each timestep until an EOS token is reached.
In this greedy decode, we also input the source

Autoencoder BLEU Scores
Model BLEU Score

Jazz-to-Jazz 54.10
Metal-to-Metal 46.92

Jazz-to-Metal-to-Jazz 2.97
Metal-to-Jazz-to-Metal 3.23

Table 8: BLEU scores for the autoencoder models and
encoder-decoder models after training

and target genre to make sure our model uses the
correct encoder, decoder, and linear layers.

5.3 Results
For text style transfer, our models should be able
to hit two main goals: content retention and style
transfer. In the following analyses, we discuss the
performance of our model within these two objec-
tives.

5.3.1 Autoencoder Model
Content Retention
Table 8 lists the BLEU scores for a variety of mod-
els. The first and second rows demonstrate the
BLEU scores for our jazz and metal autoencoders,
respectively. We can see that the autoencoders
perform very well after training and are capable
of reconstructing the original sentence very well.
This is also shown in Table 9, where we show sam-
ple outputs from our autoencoder models. For the
autoencoder tasks, the input and output are very
similar, with differing words still being close in
sentiment.

The third row demonstrates the BLEU scores for
chained jazz-to-metal and metal-to-jazz encoder-
decoders constructed by passing jazz lyrics through
the jazz encoder, then the metal decoder, then the
metal encoder, and finally the jazz decoder. In do-
ing so, we aim to replicate the original jazz lyric
input as our final output. However, we can see that
the BLEU score falls drastically to 4.81, indicating
that this cyclic model performs very poorly. Simi-
larly, the fourth row represents passing metal lyrics
through the metal encoder, then the jazz decoder,
then the jazz encoder, and finally the metal decoder.
We can see similarly poor results for this cycle.
This is potentially because the latent states from
the two encoders are very different and thus result
in drastically different outputs when combining en-
coders and decoders from different autoencoders.

We use the BLEU scores here in order to mea-
sure content retention, since BLEU scores measure

Figure 11: Architecture for the genre2genre generation model showing both cyclic loss (self loss is the same as
autoencoder training) and the prediction for jazz to metal (metal to jazz not shown but is symmetrical)

Figure 12: Training loss per step for the genre-to-genre
generation model

the similarity of a predicted text against a refer-
ence text, and we pass in the reconstructed lyrics
to compare with the original lyrics. The original
autoencoders are able to preserve the content rela-
tively well, but the chained encoder-decoders are
unable to do the same.

Style Transfer
When evaluating style transfer, we feed the gener-
ated lyrics through to our transformer classification
model to get the predicted genre. Figure 13 repre-
sents a confusion matrix demonstrating the results
when taking argmax and allowing for all of the
genres the classification model has been trained on.
Figure 14 represents a confusion matrix demon-
strating the results when taking argmax only over

jazz and metal genres.
We can see from the general argmax confu-

sion matrix that the jazz-to-metal encoder-decoder
model is very successful at transferring over the
style to metal, while the metal-to-jazz encoder-
decoder produces lyrics that are more commonly
mistaken as country or folk songs leading to an ac-
curacy of 26.6%. When we limit the genres to just
jazz and metal, the model performs much better
and achieves an improved accuracy of 70.0%.

However, judging from the results shown in Ta-
ble 9, we hypothesize that the high accuracy stems
from the fact that the metal decoder outputs words
from the metal vocabulary. As we saw from the
classification task, metal songs tend to have a dark
theme that makes it easy for our model to detect
the genre, and since the decoder is limited to vo-
cabulary from metal songs, its outputs score highly
with the classification model.

5.3.2 Genre-to-Genre Model

Content Retention

Table 10 lists the BLEU scores computed for our
genre-to-genre model, calculated in the same way
as described in Section 5.3.1. Through the BLEU
scores, we can see that the model does not do well
in maintaining text style or applying text style trans-
fer.

Through experimentation, we derived that the
failure in our model most likely comes from us us-

Autoencoder Case Study
Jazz to Jazz

Input Output
they got a crazy way of loving there they got a crazy way of loving there

now ain’t it peculiar that she’s finally <unk> your now ain’t it couldn’t that she’s right <unk>

Metal to Metal
Input Output

but she chose to push them away but she chose to push them away

the right drug wrong time he’ll be remembered the right drug wrong time he’ll be help

Jazz to Metal
Input Output

and what we have is much more than they could see one again through black every you loved every else

i may dream a million dreams the breaking that i falling see what’s

Metal to Jazz
Input Output

my iron eyes tell the tale street hold there do knows

be careful what you wish for when you dream all rock so know small it your

Table 9: Examples of outputs produced by the autoencoder models

Figure 13: Confusion matrix for generated jazz and metal lyrics with general argmax

Figure 14: Confusion matrix for generated jazz and
metal lyrics with selective argmax

Genre-to-Genre BLEU Scores
Model BLEU Score

Jazz-to-Jazz 0.155
Metal-to-Metal 0.168

Jazz-to-Metal-to-Jazz 0.103
Metal-to-Jazz-to-Metal 0.101

Table 10: BLEU scores for the genre-to-genre model
and encoder-decoder models after training

ing linear layers to embed the text which was nec-
essary to implement cycle loss as the back propaga-
tion had to be compatible with our greedy decode.
We did this by slowly building our genre-to-genre
model starting with our autoencoder. This is likely
because the nn.Embedding layer is a hash table,
so it only backward-propagates on the words found
in each input. In contrast, nn.Linear backprop-
agates on all words, which makes it hard to learn
embeddings for less common words due to their
absence in the majority of songs.

Table 11 shows examples of inputs and outputs
that our model produces. Note that <unk>s repre-
sent words that are not part of our vocab size.

When we treat our genre-to-genre model as an
autoencoder, words are repeated, but the word cho-
sen to be repeated tends to keep the sentiment of
the input. This is most clear with ”feel my anguish,”
which results in ”burn” being repeated. This shows
moderate success in our model understanding sen-
timents of the lyric.

Style Transfer

Table 11 shows examples of inputs and outputs that
our model produces. When attempting to text-style
transfer with our model, our outputs are mostly
useless, only repeating common words. We hy-

pothesize that this is because of us using linear lay-
ers as embeddings without a much larger dataset.
As described above, using a linear layer trains our
model on every word regardless of its usage in the
input while using an embedding layer only trains
on words if they are used. Thus it is likely that
our model simply predicts common words when
text-style transferring, as these are the most likely
words to appear in songs.

In addition to the logit input type being neces-
sary for the cycle loss, it is necessary for style loss.
Style loss is the loss taken from putting lyric log-
its through a source genre encoder, a target genre
decoder and generator, greedily decoding, classify-
ing using our classification model, and using cross
entropy loss to compare predictions to the target
genre. Currently, our self and cycle loss could be
satisfied by simply copying input to output. Style
loss forces our model to take text style into account.
However, for back propagation reasons, it requires
the input of the classification model to be logits.
Additionally, since we implemented and trained our
classifier with a specific tokenizer and embedding,
we could not smoothly integrate this third type of
loss. We would like to explore this loss function
along with more computing capacity to hopefully
result in a more well-rounded model with respect
to our objectives.

6 Conclusion and Future Work

In this paper, we aim to solve the problems of song
lyric classification and generation. For classifica-
tion, we develop two models: one with an RNN
as its main architecture and one with a transformer
as its main architecture. While the former did not
show any success, the latter was successful in our
experiments in classifying lyrics into genres, show-
ing that there are semantic differences detectable
by deep-learning models.

For generation, we develop two models: one
based on autoencoders and one based on a many-to-
many translation model architecture. In our experi-
ments, our autoencoder showed moderate success
in text-style transfer, as our transformer classifier
was able to classify our generated metal lyrics as
such. However, our genre-to-genre model was not
successful, due to our inability to properly embed
the inputs and train our model on style and seman-
tics.

In the future, we plan to make our genre-to-genre
model better by implementing the style loss, to al-

Genre-to-Genre Case Study
Jazz to Jazz

Input Output
and this this bitter and tears what’s what’s what’s what’s

church bells <unk> on a sunday morn dining divine divine divine divine divine

Metal to Metal
Input Output

i’m grasping harder with every breath i’m i’d as as lonely lonely lonely lonely

feel my anguish feel special burn burn

Jazz to Metal
Input Output

and this this bitter until until until until until until until

church bells <unk> on a sunday morn lonely lonely lonely lonely lonely lonely

Metal to Jazz
Input Output

i’m grasping harder with every breath time there’s there’s there’s there’s there’s

feel my anguish there’s there’s there’s there’s

Table 11: Examples of outputs produced by the genre-to-genre model

low our model to have an objective that enforces
style. This also requires modifying our classifica-
tion model to have the same vocab as our genera-
tion model and to take in logits of each word. All
models could benefit from training on more data
points and further fine tuning with more computing
resources, and we’d like to see how the models
perform on other song datasets or classifying and
styling based on artist as opposed genre.

Acknowledgements

We would like to thank Prof. Jacob Andreas, Prof.
Jim Glass, and the TAs for their continuous support
throughout this semester.

Figure 15: Picture of us during our presentation :)

References

Matei Bejan. 2021. Multi-lingual lyrics for genre clas-
sification.

D. Bužić and J. Dobša. 2018. Lyrics classification us-
ing naive bayes. 2018 41st International Conven-
tion on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), pages
1011–1015.

Ning Dai, Jianze Liang, Xipeng Qiu, and Xuanjing
Huang. 2019. Style transformer: Unpaired text
style transfer without disentangled latent represen-
tation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 5997–6007, Florence, Italy. Association
for Computational Linguistics.

Michael Fell and Caroline Sporleder. 2014. Lyrics-
based analysis and classification of music. COLING,
2014:620–641.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P. Xing. 2017. Controllable
text generation. CoRR, abs/1703.00955.

Vineet John, Lili Mou, Hareesh Bahuleyan, and Olga
Vechtomova. 2019. Disentangled representation
learning for non-parallel text style transfer. In Pro-
ceedings of the 57th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 424–434,
Florence, Italy. Association for Computational Lin-
guistics.

Keith Kahn-Harris. 2006. Extreme metal: Music and
culture on the edge. Berg.

Heejin Kim and Kyung-Ah Sohn. 2020. How pos-
itive are you: Text style transfer using adaptive
style embedding. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 2115–2125, Barcelona, Spain (Online). Inter-
national Committee on Computational Linguistics.

Guillaume Lample, Sandeep Subramanian, Eric Smith,
Ludovic Denoyer, Marc’Aurelio Ranzato, and Y-
Lan Boureau. 2019. Multiple-attribute text rewrit-
ing. In International Conference on Learning Rep-
resentations.

Juncen Li, Robin Jia, He He, and Percy Liang. 2018.
Delete, retrieve, generate: A simple approach to sen-
timent and style transfer. CoRR, abs/1804.06437.

Bill C Malone. 2003. Singing cowboys and musical
mountaineers: Southern culture and the roots of
country music, volume 34. University of Georgia
Press.

Cory McKay, John Ashley Burgoyne, Jason Hockman,
Jordan BL Smith, Gabriel Vigliensoni, and Ichiro
Fujinaga. 2010. Evaluating the genre classifica-
tion performance of lyrical features relative to au-
dio, symbolic and cultural features. ISMIR, page
213–218.

Chris Rojek. 2011. Pop music, pop culture. Polity.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Tianxiao Shen, Tao Lei, Regina Barzilay, and Tommi S.
Jaakkola. 2017. Style transfer from non-parallel text
by cross-alignment. CoRR, abs/1705.09655.

Siddharth Sigtia and Simon Dixon. 2014. Improved
music feature learning with deep neural networks.
In 2014 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
6959–6963.

https://www.kaggle.com/mateibejan/multilingual-lyrics-for-genre-classification
https://www.kaggle.com/mateibejan/multilingual-lyrics-for-genre-classification
https://doi.org/10.23919/MIPRO.2018.8400185
https://doi.org/10.23919/MIPRO.2018.8400185
https://doi.org/10.18653/v1/P19-1601
https://doi.org/10.18653/v1/P19-1601
https://doi.org/10.18653/v1/P19-1601
https://www.aclweb.org/anthology/C14-1059/
https://www.aclweb.org/anthology/C14-1059/
http://arxiv.org/abs/1703.00955
http://arxiv.org/abs/1703.00955
https://doi.org/10.18653/v1/P19-1041
https://doi.org/10.18653/v1/P19-1041
https://doi.org/10.18653/v1/2020.coling-main.191
https://doi.org/10.18653/v1/2020.coling-main.191
https://doi.org/10.18653/v1/2020.coling-main.191
https://openreview.net/forum?id=H1g2NhC5KQ
https://openreview.net/forum?id=H1g2NhC5KQ
http://arxiv.org/abs/1804.06437
http://arxiv.org/abs/1804.06437
http://jmir.sourceforge.net/publications/ISMIR_2010_Evaluating.pdf
http://jmir.sourceforge.net/publications/ISMIR_2010_Evaluating.pdf
http://jmir.sourceforge.net/publications/ISMIR_2010_Evaluating.pdf
https://doi.org/10.18653/v1/P16-1009
https://doi.org/10.18653/v1/P16-1009
http://arxiv.org/abs/1705.09655
http://arxiv.org/abs/1705.09655
https://doi.org/10.1109/ICASSP.2014.6854949
https://doi.org/10.1109/ICASSP.2014.6854949

Alexandros Tsaptsinos. Music genre classification by
lyrics using a hierarchical attention network.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and
Pierre antoine Manzagol. 2008. Extracting and com-
posing robust features with denoising autoencoders.
In In, pages 1096–1103. ACM.

Jingjing Xu, Xu Sun, Qi Zeng, Xuancheng Ren, Xi-
aodong Zhang, Houfeng Wang, and Wenjie Li.
2018. Unpaired sentiment-to-sentiment translation:
A cycled reinforcement learning approach. CoRR,
abs/1805.05181.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489, San Diego, California. Associa-
tion for Computational Linguistics.

Teh Chao Ying, Shyamala Doraisamy, and
Lili Nurliyana Abdullah. 2012. Genre and
mood classification using lyric features. In 2012
International Conference on Information Retrieval
Knowledge Management, pages 260–263.

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/reports/2728368.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/reports/2728368.pdf
http://arxiv.org/abs/1805.05181
http://arxiv.org/abs/1805.05181
https://doi.org/10.18653/v1/N16-1174
https://doi.org/10.18653/v1/N16-1174
https://doi.org/10.1109/InfRKM.2012.6204985
https://doi.org/10.1109/InfRKM.2012.6204985

